
Real Time Cryptanalysis of A��� on a PC

Alex Biryukov � Adi Shamir �� David Wagner ���

Abstract� A��� is the strong version of the encryption algorithm used
by about ��� million GSM customers in Europe to protect the over�
the�air privacy of their cellular voice and data communication� The best
published attacks against it require between ��� and ��� steps� This level
of security makes it vulnerable to hardware�based attacks by large or�
ganizations� but not to software�based attacks on multiple targets by
hackers�
In this paper we describe new attacks on A���� which are based on subtle
	aws in the tap structure of the registers� their noninvertible clocking
mechanism� and their frequent resets� After a ��� parallelizable data
preparation stage
which has to be carried out only once�� the actual
attacks can be carried out in real time on a single PC�
The �rst attack requires the output of the A��� algorithm during the
�rst two minutes of the conversation� and computes the key in about
one second� The second attack requires the output of the A��� algo�
rithm during about two seconds of the conversation� and computes the
key in several minutes� The two attacks are related� but use dierent
types of time�memory tradeos� The attacks were veri�ed with actual
implementations� except for the preprocessing stage which was exten�
sively sampled rather than completely executed�
REMARK� We based our attack on the version of the algorithm which
was derived by reverse engineering an actual GSM telephone and pub�
lished at http���www�scard�org� We would like to thank the GSM orga�
nization for graciously con�rming to us the correctness of this uno�cial
description� In addition� we would like to stress that this paper consid�
ers the narrow issue of the cryptographic strength of A���� and not the
broader issue of the practical security of �elded GSM systems� about
which we make no claims�

� Introduction

The over�the�air privacy of GSM telephone conversations is protected by the A�
stream cipher� This algorithm has two main variants� The stronger A��� version
is used by about ��� million customers in Europe� while the weaker A��	 version
is used by another ��� million customers in other markets� The approximate
design of A��� was leaked in �

�� and the exact design of both A��� and A��	
was reverse engineered by Briceno from an actual GSM telephone in �

 �see
����

� Computer Science department� The Weizmann Institute� Rehovot ������ Israel�
�� Computer Science department� The Weizmann Institute� Rehovot ������ Israel�
��� Computer Science department� University of California� Berkeley CA ������ USA�

In this paper we develop two new cryptanalytic attacks on A���� in which
a single PC can extract the conversation key in real time from a small amount
of generated output� The attacks are related� but each one of them optimizes
a di�erent parameter� The �rst attack �called the biased birthday attack�
requires two minutes of data and one second of processing time� whereas the
second attack �called the the random subgraph attack� requires two seconds
of data and several minutes of processing time� There are many possible choices
of tradeo� parameters in these attacks� and three of them are summarized in
Table ��

Attack Type Preprocessing Available Number of Attack time
steps data ��GB disks

Biased Birthday attack
�� ��� � minutes � � second
Biased Birthday attack
�� ��� � minutes � � second
Random Subgraph attack ��� � seconds � minutes

Table �� Three possible tradeo points in the attacks on A����

Many of the ideas in these two new attacks are applicable to other stream
ciphers as well� and de�ne new quanti�able measures of security�

The paper is organized in the following way� Section 	 contains a full descrip�
tion of the A��� algorithm� Previous attacks on A��� are surveyed in Section
�� and an informal description of the new attacks is contained in Section �� Fi�
nally� Section � contains various implementation details and an analysis of the
expected success rate of the attacks� based on large scale sampling with actual
implementations�

� Description of the A��� stream cipher

A GSM conversation is sent as a sequence of frames every ��� millisecond� Each
frame contains ��� bits representing the digitized A to B communication� and
��� bits representing the digitized B to A communication� Each conversation
can be encrypted by a new session key K� For each frame� K is mixed with a
publicly known frame counter Fn� and the result serves as the initial state of a
generator which produces 		� pseudo random bits� These bits are XOR�ed by
the two parties with the ������� bits of the plaintext to produce the �������
bits of the ciphertext�

A��� is built from three short linear feedback shift registers �LFSR� of lengths
�
� 		� and 	� bits� which are denoted by R�� R	 and R� respectively� The
rightmost bit in each register is labelled as bit zero� The taps of R� are at bit
positions ������������ the taps of R	 are at bit positions 	��	�� and the taps of
R� are at bit positions �� 	��	��		 �see Figure ��� When a register is clocked�

its taps are XORed together� and the result is stored in the rightmost bit of
the left�shifted register� The three registers are maximal length LFSR�s with
periods 	��� �� 	��� �� and 	��� �� respectively� They are clocked in a stop�go
fashion using the following majority rule� Each register has a single �clocking�
tap �bit � for R�� bit �� for R	� and bit �� for for R��� each clock cycle� the
majority function of the clocking taps is calculated and only those registers whose
clocking taps agree with the majority bit are actually clocked� Note that at each
step either two or three registers are clocked� and that each register moves with
probability ��� and stops with probability ����

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

R1

R2

R3

21

18

22

13

m = Majority (C1, C2, C3)

0

0

0

7C3

C2

C1

Fig� �� The A��� stream cipher�

The process of generating pseudo random bits from the session key K and
the frame counter Fn is carried out in four steps�

� The three registers are zeroed� and then clocked for �� cycles �ignoring the
stop�go clock control�� During this period each bit of K �from lsb to msb�
is XOR�ed in parallel into the lsb�s of the three registers�

� The three registers are clocked for 		 additional cycles �ignoring the stop�go
clock control�� During this period the successive bits of Fn �from lsb to msb�
are again XOR�ed in parallel into the lsb�s of the three registers� The contents
of the three registers at the end of this step is called the initial state of the

frame�
� The three registers are clocked for ��� additional clock cycles with the
stop�go clock control but without producing any outputs�

� The three registers are clocked for 		� additional clock cycles with the
stop�go clock control in order to produce the 		� output bits� At each clock
cycle� one output bit is produced as the XOR of the msb�s of the three
registers�

� Previous attacks

The attacker is assumed to know some pseudo random bits generated by A���
in some of the frames� This is the standard assumption in the cryptanalysis of
stream ciphers� and we do not consider in this paper the crucial issue of how
one can obtain these bits in �elded GSM systems� For the sake of simplicity� we
assume that the attacker has complete knowledge of the outputs of the A��� al�
gorithm during some initial period of the conversation� and his goal is to �nd the
key in order to decrypt the remaining part of the conversation� Since GSM tele�
phones send a new frame every ��� milliseconds� each second of the conversation
contains about 	� frames�

At the rump session of Crypto

� Ian Goldberg and David Wagner an�
nounced an attack on A��	 which requires very few pseudo random bits and
just O�	��� steps� This demonstrated that the �export version� A��	 is totally
insecure�

The security of the A��� encryption algorithmwas analyzed in several papers�
Some of them are based on the early imprecise description of this algorithm�
and thus their details have to be slightly modi�ed� The known attacks can be
summarized in the following way�

� Briceno�� found out that in all the deployed versions of the A��� algorithm�
the �� least signi�cant of the �� key bits were always set to zero� The com�
plexity of exhaustive search is thus reduced to O�	���� �

� Anderson and Roe�� proposed an attack based on guessing the �� bits in
the shorter R� and R� registers� and deriving the 	� bits of the longer R�

register from the output� However� they occasionally have to guess additional
bits to determine the majority�based clocking sequence� and thus the total
complexity of the attack is about O�	���� Assuming that a standard PC can
test ten million guesses per second� this attack needs more than a month to
�nd one key�

� Golic�� described an improved attack which requires O�	��� steps� However�
each operation in this attack is much more complicated� since it is based on
the solution of a system of linear equations� In practice� this algorithm is not
likely to be faster than the previous attack on a PC�

� Our new attack is not based on this assumption� and is thus applicable to A���
implementations with full �� bit keys� It is an interesting open problem whether we
can speed it up by assuming that �� key bits are zero�

� Golic�� describes a general time�memory tradeo� attack on stream ciphers
�which was independently discovered by Babbage 	� two years earlier�� and
concludes that it is possible to �nd the A��� key in 	�� probes into random
locations in a precomputed table with 	�� �	� bit entries� Since such a table
requires a �� terabyte hard disk� the space requirement is unrealistic� Al�
ternatively� it is possible to reduce the space requirement to ��	 gigabytes�
but then the number of probes increases to O�	���� Since random access to
the fastest commercially available PC disks requires about � milliseconds�
the total probing time is almost three weeks� In addition� this tradeo� point
can only be used to attack GSM phone conversations which last more than
� hours� which again makes it unrealistic�

� Informal Description of the New Attacks

We start with an executive summary of the key ideas of the two attacks� More
technical descriptions of the various steps will be provided in the next section�

Key idea �� Use the Golic time�memory tradeo�� The starting point
for the new attacks is the time�memory tradeo� described in Golic��� which is
applicable to any cryptosystem with a relatively small number of internal states�
A��� has this weakness� since it has n � 	�� states de�ned by the �
�		�	� � ��
bits in its three shift registers� The basic idea of the Golic time�memory tradeo�
is to keep a large set A of precomputed states on a hard disk� and to consider the
large set B of states through which the algorithm progresses during the actual
generation of output bits� Any intersection between A and B will enable us to
identify an actual state of the algorithm from stored information�

Key idea �� Identify states by pre�xes of their output sequences�
Each state de�nes an in�nite sequence of output bits produced when we start
clocking the algorithm from that state� In the other direction� states are usu�
ally uniquely de�ned by the �rst log�n� bits in their output sequences� and thus
we can look for equality between unknown states by comparing such pre�xes
of their output sequences� During precomputation� pick a subset A of states�
compute their output pre�xes� and store the �pre�x� state� pairs sorted into in�
creasing pre�x values� Given actual outputs of the A��� algorithm� extract all
their �partially overlapping� pre�xes� and de�ne B as the set of their correspond�
ing �unknown� states� Searching for common states in A and B can be e�ciently
done by probing the sorted data A on the hard disk with pre�x queries from B�

Key idea �� A	
� can be e�ciently inverted� As observed by Golic�
the state transition function of A��� is not uniquely invertible� The majority
clock control rule implies that up to � states can converge to a common state
in one clock cycle� and some states have no predecessors� We can run A���
backwards by exploring the tree of possible predecessor states� and backtracking
from dead ends� The average number of predecessors of each node is �� and thus
the expected number of vertices in the �rst k levels of each tree grows only
linearly in k �see���� As a result� if we �nd a common state in the disk and data�
we can obtain a small number of candidates for the initial state of the frame�

The weakness we exploit here is that due to the frequent reinitializations there
is a very short distance from intermediate states to initial states�

Key idea �� The key can be extracted from the initial state of any
frame� Here we exploit the weakness of the A��� key setup routine� Assume that
we know the state of A��� immediately after the key and frame counter were
used� and before the ��� mixing steps� By running backwards� we can eliminate
the e�ect of the known frame counter in a unique way� and obtain �� linear
combinations of the �� key bits� Since the tree exploration may suggest several
keys� we can choose the correct one by mixing it with the next frame counter�
running A��� forward for more than ��� steps� and comparing the results with
the actual data in the next frame�

Key idea 	� The Golic attack on A	
� is marginally impractical�
By the well known birthday paradox� A and B are likely to have a common
state when their sizes a and b satisfy a � b � n� We would like a to be bounded
by the size of commercially available PC hard disks� and b to be bounded by
the number of overlapping pre�xes in a typical GSM telephone conversation�
Reasonable bounds on these values �justi�ed later in this paper� are a � 	�� and
b � 	��� Their product is 	�	� which is about ��� times smaller than n � 	��� To
make the intersection likely� we either have to increase the storage requirement
from ��� gigabytes to �� terabytes� or to increase the length of the conversation
from two minutes to three hours� Neither approach seems to be practical� but the
gap is not huge and a relatively modest improvement by two orders of magnitude
is all we need to make it practical�

Key idea � Use special states� An important consideration in imple�
menting time�memory tradeo� attacks is that access to disk is about a million
times slower than a computational step� and thus it is crucial to minimize the
number of times we look for data on the hard disk� An old idea due to Ron
Rivest is to keep on the disk only special states which are guaranteed to produce
output bits starting with a particular pattern � of length k� and to access the
disk only when we encounter such a pre�x in the data� This reduces the number
b of disk probes by a factor of about 	k� The number of points a we have to
memorize remains unchanged� since in the formula a � b � n both b and n are
reduced by the same factor 	k� The downside is that we have to work 	k times
harder during the preprocessing stage� since only 	�k of the random states we
try produce outputs with such a k bit pre�x� If we try to reduce the number of
disk access steps in the time memory attack on A��� from 	�� to 	�� we have
to increase the preprocessing time by a factor of about ������� which makes it
impractically long�

Key idea �� Special states can be e�ciently sampled in A	
�� A
major weakness of A��� which we exploit in both attacks is that it is easy
to generate all the states which produce output sequences that start with a
particular k�bit pattern � with k � �� without trying and discarding other states�
This is due to a poor choice of the clocking taps� which makes the register bits
that a�ect the clock control and the register bits that a�ect the output unrelated
for about �� clock cycles� so we can choose them independently� This easy access

to special states does not happen in good block ciphers� but can happen in stream
ciphers due to their simpler transition functions� In fact� the maximal value of
k for which special states can be sampled without trial and error can serve as a
new security measure for stream ciphers� which we call its sampling resistance�
As demonstrated in this paper� high values of k can have a big impact on the
e�ciency of time�memory tradeo� attacks on such cryptosystems�

Key idea �� Use biased birthday attacks� The main idea of the �rst
attack is to consider sets A and B which are not chosen with uniform probability
distribution among all the possible states� Assume that each state s is chosen
for A with probability PA�s�� and is chosen for B with probability PB�s�� If the
means of these probability distributions are a�n and b�n� respectively� then the
expected size of A is a� and the expected size of B is b�

The birthday threshold happens when
P

s PA�s�PB�s� � �� For independent
uniform distributions� this evaluates to the standard condition a�b � n� However�
in the new attack we choose states for the disk and states in the data with
two non�uniform probability distributions which have strong positive correlation�
This makes our time memory tradeo� much more e�cient than the one used by
Golic� This is made possible by the fact that in A���� the initial state of each
new frame is rerandomized very frequently with di�erent frame counters�

Key idea �� Use Hellman�s time�memory tradeo� on a subgraph of
special states� The main idea of the second attack �called the random subgraph
attack� is to make most of the special states accessible by simple computations
from the subset of special states which are actually stored in the hard disk� The
�rst occurrence of a special state in the data is likely to happen in the �rst two
seconds of the conversation� and this single occurrence su�ces in order to locate
a related special state in the disk even though we are well below the threshold
of either the normal or the biased birthday attack� The attack is based on a new
function f which maps one special state into another special state in an easily
computable way� This f can be viewed as a random function over the subspace
of 	�� special states� and thus we can use Hellman�s time�memory tradeo��� in
order to invert it e�ciently� The inverse function enables us to compute special
states from output pre�xes even when they are not actually stored on the hard
disk� with various combinations of time T and memoryM satisfyingM

p
T � 	���

If we choose M � 	��� we get T � 	��� and thus we can carry out the attack
in a few minutes� after a 	�� preprocessing stage which explores the structure of
this function f �

Key idea ��� A	
� is very e�cient on a PC� The A��� algorithm was
designed to be e�cient in hardware� and its straightforward software implemen�
tation is quite slow� To execute the preprocessing stage� we have to run it on
a distributed network of PC�s up to 	�� times� and thus we need an extremely
e�cient way to compute the e�ect of one clock cycle on the three registers�

We exploit the following weakness in the design of A���� Each one of the
three shift registers is so small that we can precompute all its possible states�
and keep them in RAM as three cyclic arrays� where successive locations in each
array represent successive states of the corresponding shift register� In fact� we

don�t have to keep the full states in the arrays� since the only information we
have to know about a state is its clocking tap and its output tap� A state can
thus be viewed as a triplet of indices �i� j� k� into three large single bit arrays
�see Figure 	�� A��i�� A��j�� A��k� are the clocking taps of the current state� and
A��i� ���� A��j� �	�� A��k� ��� are the output taps of the current state �since
these are the corresponding delays in the movement of clocking taps to output
taps when each one of the three registers is clocked�� Since there is no mixing of
the values of the three registers� their only interaction is in determining which
of the three indices should be incremented by �� This can be determined by a
precomputed table with three input bits �the clocking taps� and three output
bits �the increments of the three registers�� When we clock A��� in our software
implementation� we don�t shift registers or compute feedbacks � we just add a
��� vector to the current triplet of indices� A typical two dimensional variant
of such movement vectors in triplet space is described in Figure �� Note the
local tree structure determined by the deterministic forward evaluation and the
nondeterministic backward exploration in this triplet representation�

Since the increment table is so small� we can expand the A tables from bits to
bytes� and use a larger precomputed table with 	�� entries� whose inputs are the
three bytes to the right of the clocking taps in the three registers� and outputs
are the three increments to the indices which allow us to jump directly to the
state which is � clock cycles away� The total amount of RAM needed for the
state arrays and precomputed movement tables is less than �	� MB� and the
total cost of advancing the three registers for � clock cycles is one table lookup
and three integer additions� A similar table lookup technique can be used to
compute in a single step output bytes instead of output bits� and to speed up
the process of running A��� backwards�

� Detailed Description of the Attacks

In this section we �ll in the missing details� and analyse the success rate of the
new attacks�

	�� E�cient Sampling of Special States

Let � be any �� bit pattern of bits� To simplify the analysis� we prefer to use an
� which does not coincide with shifted versions of itself �such as � � ���������
since this makes it very unlikely that a single 		��bit frame contains more than
one occurrence of ��

The total number of states which generate an output pre�x of � is about
	�� � 	��� � 	��� We would like to generate all of them in a �barely doable�
	�� preprocessing stage� without trying all the 	�� possible states and discarding
the vast majority which fail the test� The low sampling resistance of A��� is
made possible by several �aws in its design� which are exploited in the following
algorithm�

Size 2 -1
23

R1

i

R2

j

R3

k

j

k

i Size 2 -1

Size 2 -1

 22

 19

101

011

110

111

Fig� �� Triplet representation of a state�

i

j

k

(i,j,k)

(i+1,j+1,k+1)

(i, j+1, k+1)

(i+1, j, k+1)

(i+1, k+1, j)

Fig� �� The state�transition graph in the triplet representation of A����

� Pick an arbitrary �
�bit value for the shortest register R�� Pick arbitrary
values for the rightmost �� bits in R	 and R� which will enter the clock
control taps in the next few cycles� We can thus de�ne 	��
��
�� � 	��

partial states�
� For each partial state we can uniquely determine the clock control of the
three registers for the next few cycles� and thus determine the identity of the
bits that enter their msb�s and a�ect the output�

� Due to the majority clock control� at least one of R	 and R� shifts a new
�still unspeci�ed� bit into its msb at each clock cycle� and thus we can make
sure that the computed output bit has the desired value� Note that about
half the time only one new bit is shifted �and then its choice is forced�� and
about half the time two new bits are shifted �and then we can choose them in
two possible ways�� We can keep this process alive without time consuming
trial and error as long as the clock control taps contain only known bits
whereas the output taps contain at least one unknown bit� A��� makes this
very easy� by using a single clocking tap and placing it in the middle of each
register� We can place in R	 and R� �� speci�ed bits to the right of the clock
control tap� and ����	 unspeci�ed bits to the right of the output tap� Since
each register moves only ��� of the time� we can keep this process alive for
about �� clock cycles� as desired�

� This process generates only special states� and cannot miss any special state
�if we start the process with its partial speci�cation� we cannot get into
an early contradiction�� We can similarly generate any number c � 	�� of
randomly chosen special states in time proportional to c� As explained later
in the paper� this can make the preprocessing faster� at the expense of other
parameters in our attack�

	�� E�cient Disk Probing

To leave room for a su�ciently long identifying pre�x of �� bits after the ���bit ��
we allow it to start only at bit positions � to ��� in each one of the given frames
�i�e�� at a distance of ��� to 	�� from the initial state�� The expected number of
occurrences of � in the data produced by A��� during a two minute conversation
is thus 	��� � ��� � �	� � �������� � ��� This is the expected number of times
b we access the hard disk� Since each random access takes about � milliseconds�
the total disk access time becomes negligible �about ��� seconds��

	�� E�cient Disk Storage

The data items we store on the disk are �pre�x� state� pairs� The state of A���
contains �� bits� but we keep only special states and thus we can encode them
e�ciently with shorter �� bit names� by specifying the �� bits of the partial state
and the � � choice bits in the sampling procedure� We can further reduce the
state to less than �� bits �� bytes� by leaving some of the �� bits unspeci�ed� This
saves a considerable fraction of the disk space prepared during preprocessing�
and the only penalty is that we have to try a small number of candidate states

instead of one candidate state for each one of the �� relevant frames� Since this
part is so fast� even in its slowed down version it takes less than a second�

The output pre�x produced from each special state is nominally of length
�������� bits� However� the �rst �� bits are always the constant �� and the
next �� bits are stored in sorted order on the disk� We can thus store the full
value of these �� bits only once per sector� and encode on the disk only their
small increments �with a default value of ��� Other possible implementations are
to use the top parts of the pre�xes as direct sector addresses or as �le names�
With these optimizations� we can store each one of the sorted �pre�x� state�
pairs in just � bytes� The largest commercially available PC hard disks �such as
IBM Ultrastar �	 ZX or Seagate Cheetah ��� have �� gigabytes� By using two
such disks� we can store ��� � 	���� � 	�� pairs during the preprocessing stage�
and characterize each one of them by the �usually unique� ���bit output pre�x
which follows ��

	�� E�cient Tree Exploration

The forward state�transition function of A��� is deterministic� but in the reverse
direction we have to consider four possible predecessors� About ��� of the states
have no predecessors� ����	 of the states have one predecessor� ���	 of the states
have two predecessors� ���	 of the states have three predecessors� and ���	 of
the states have four predecessors�

Since the average number of predecessors is �� Golic assumed that a good
statistical model for the generated trees of predecessors is the critical branch�
ing process �see ���� We were surprised to discover that in the case of A����
there was a very signi�cant di�erence between the predictions of this model and
our experimental data� For example� the theory predicted that only 	� of the
states would have some predecessor at depth ���� whereas in a large sample of
����������� trees we generated from random A��� states the percentage was
close to ���� Another major di�erence was found in the tail distributions of the
number of sons at depth ���� Theory predicted that in our sample we should see
some cases with close to ���� sons� whereas in our sample we never saw trees
with more than �	� sons at depth ����

	�	 The Biased Birthday Attack�

To analyse the performance of our biased birthday attack� we introduce the
following notation�

De�nition � A state s is coloured red� if the sequence of output bits produced
from state s starts with � �i�e�� it is a special state�� The subspace of all the red
states is denoted by R�

De�nition � A state is coloured green� if the sequence of output bits produced
from state s contains an occurrence of � which starts somewhere between bit
positions ��� and ���� The subspace of all the green states is denoted by G�

Green
belt

Red Roots

Green Green

100 steps

177 steps

Fig� �� Trees of dierent sizes�

The red states are the states that we keep in the disk� look for in the data�
and try to collide by comparing their pre�xes� The green states are all the states
that could serve as initial states in frames that contain �� Non�green initial states
are of no interest to us� since we discard the frames they generate from the actual
data�

The size of R is approximately 	��� since there are 	�� possible states� and the
probability that � occurs right at the beginning of the output sequence is 	����
Since the redness of a state is not directly related to its separate coordinates i�
j� k in the triplet space� the red states can be viewed as randomly and sparsely
located in this representation� The size of G is approximately ��� � 	�� �which is
still a small fraction of the state space� since � has ��� opportunities to occur
along the output sequence�

Since a short path of length 	�� in the output sequence is very unlikely to
contain two occurrences of �� the relationship between green and red states is
essentially many to one� The set of all the relevant states we consider can be
viewed as a collection of disjoint trees of various sizes� where each tree has a red
state as its root and a �belt� of green states at levels ��� to 	�� below it �see
Figure ��� The weight W �s� of a tree whose root is the red state s is de�ned as
the number of green states in its belt� and s is called k�heavy if W �s� � k�

The crucial observation which makes our biased birthday attack e�cient is
that in A��� there is a huge variance in the weights of the various red states� We
ran the tree exploration algorithm on ����������� random states and computed
their weights� We found out that the weight of about ��� of the states was zero�
because their trees died out before reaching depth ���� Other weights ranged all
the way from � to more than 	������

The leftmost graph of Figure � describes for each x which is a multiple of ���
the value y which is the total weight of all the trees whose weights were between
x and x � ���� The total area under the graph to the right of x � k represents
the total number of green states in all the k�heavy trees in our sample�

The initial mixing of the key and frame number� which ignores the usual clock
control and �ips the least signi�cant bits of the registers about half the time
before shifting them� can be viewed as random jumps with uniform probability

distribution into new initial states� even a pair of frame counters with Hamming
distance � can lead to far away initial states in the triplet space� When we
restrict our attention to the frames that contain �� we get a uniform probability
distribution over the green states� since only green states can serve as initial
states in such frames�

The red states� on the other hand� are not encountered with uniform prob�
ability distribution in the actual data� For example� a red state whose tree has
no green belt will never be seen in the data� On the other hand� a red state
with a huge green belt has a huge number of chances to be reached when the
green initial state is chosen with uniform probability distribution� In fact the
probability of encountering a particular red state s in a particular frame which
is known to contain � is the ratio of its weight W �s� and the total number of
green states ��� � 	��� and the probability of encountering it in one of the ��
relevant frames is PB�s� � �� �W �s������ � 	����

Since PB�s� has a huge variance� we can maximize the expected number of
collisions

P
s PA�s� � PB�s� by choosing red points for the hard disk not with

uniform probability distribution� but with a biased probability PA�s� which max�
imizes the correlation between these distributions� while minimizing the expected
size of A� The best way to do this is to keep on the disk only the heaviest trees� In
other words� we choose a threshold number k� and de�ne PA�s� � � ifW �s� � k�
and PA�s� � � if W �s� � k� We can now easily compute the expected number
of collisions by the formula�

X

s

PA�s� � PB�s� �
X

sjW �s��k

�� �W �s������ � 	���

which is just the number of red states we keep on the disk� times the average
weight of their trees� times ������� � 	����

In our actual attack� we keep 	�� red states on the disk� This is a 	��� fraction
of the 	�� red states� With such a tiny fraction� we can choose particularly heavy
trees with an average weight of �	����� The expected number of colliding red
states in the disk and the actual data is 	�� ��	� ������������	��� � ����� This
expected value makes it quite likely that a collision will actually exist� �

The intuition behind the biased time memory tradeo� attack is very simple�
We store red states� but what we really want to collide are the green states in
their belts �which are accessible from the red roots by an easy computation��
The �� green states in the actual data are uniformly distributed� and thus we
want to cover about �� of the green area under the curve in the right side of
Figure �� Standard time memory tradeo� attacks store random red states� but
each stored state increases the coverage by just ��� green states on average�With
our optimized choice in the preprocessing stage� each stored state increases the
coverage by �	���� green states on average� which improves the e�ciency of the
attack by almost two orders of magnitude�

� Note that in time memory tradeo attacks� it becomes increasingly expensive to push
this probability towards �� since the only way to guarantee success is to memorize
the whole state space�

	� E�cient Determination of Initial States

One possible disadvantage of storing heavy trees is that once we �nd a collision�
we have to try a large number of candidate states in the green belt of the colliding
red state� Since each green state is only partially speci�ed in our compact ��byte
representation� the total number of candidate green states can be hundreds of
thousands� and the real time part of the attack can be relatively slow�

However� this simple estimate is misleading� The parasitic red states obtained
from the partial speci�cation can be quickly discarded by evaluating their out�
puts beyond the guaranteed occurrence of � and comparing it to the bits in the
given frame� In addition� we know the exact location of � in this frame� and thus
we know the exact depth of the initial state we are interested in within the green
belt� As a result� we have to try only about �� states in a cut through the green
belt� and not the �	���� states in the full belt�

	�� Reducing the Preprocessing Time of the Biased Birthday
Attack

The 	�� complexity of the preprocessing stage of this attack can make it too
time consuming for a small network of PC�s� In this section we show how to
reduce this complexity by any factor of up to ����� by slightly increasing either
the space complexity or the length of the attacked conversation�

The e�cient sampling procedure makes it possible to generate any number
c � 	�� of random red states in time proportional to c� To store the same number
of states in the disk� we have to choose a larger fraction of the tested trees� which
have a lower average weight� and thus a less e�cient coverage of the green states�
Table 	 describes the average weight of the heaviest trees for various fractions of
the red states� which was experimentally derived from our sample of �����������
A��� trees� This table can be used to choose the appropriate value of k in the

Average Weights

��� ���� ��� ���� ��� ���� ��� ����
��� ���� ��� ���� ���� ���� ���� �����
���� ����� ���	 ����� ���� ����� ���� �����

���� ����� ���� ����� ���� ����� ���� �����
���� ����� ���� ����� ���� ����� ���	 �����
���� ����� ���� ����� ���� �����

Table �� The average weight of the heaviest trees for various fractions of R�

de�nition the k�heavy trees for various choices of c� The implied tradeo� is
very favorable� If we increase the fraction from 	��� to 	�	� we can reduce the
preprocessing time by a factor of �� �from 	�� to 	���� and compensate by either
doubling the length of the attacked conversation from 	 minutes to � minutes�

or doubling the number of hard disks from 	 to �� The extreme point in this
tradeo� is to store in the disk all the sampled red states with nonzero weights
�the other sampled red states are just a waste of space� since they will never
be seen in the actual data�� In A��� about ��� of the red states have nonzero
weights� and thus we have to sample about 	�� red states in the preprocessing
stage in order to �nd the ��� among them �about 	�� states� which we want
to store� with an average tree weight of ����� To keep the same probability of
success� we have to attack conversations which last about half an hour�

A further reduction in the complexity of the preprocessing stage can be ob�
tained by the early abort strategy� Explore each red state to a shallow depth�
and continue to explore only the most promising candidates which have a large
number of sons at that depth� This heuristic does not guarantee the existence
of a large belt� but there is a clear correlation between these events�

To check whether the e�ciency of our biased birthday attack depends on the
details of the stream cipher� we ran several experiments with modi�ed variants
of A���� In particular� we concentrated on the e�ect of the clock control rule�
which determines the noninvertibility of the model� For example� we hashed the
full state of the three registers and used the result to choose among the four
possible majority�like movements ����������� ���������� ���������� ���������
in the triplet space� The results were very di�erent from the real majority rule�
We then replaced the majority rule by a minority rule �if all the clocking taps
agree� all the registers move� otherwise only the minority register moves�� The
results of this minority rule were very similar to the majority�like hashing case�
and very di�erent from the real majority case �see Figure ��� It turns out that
in this sense A��� is actually stronger than its modi�ed versions� but we do
not currently understand the reason for this strikingly di�erent behavior� We
believe that the type of data in Table 	� which we call the tail coverage of
the cryptosystem� can serve as a new security measure for stream ciphers with
noninvertible state transition functions�

	�� Extracting the Key From a Single Red State

The biased birthday attack was based on a direct collision between a state in
the disk and a state in the data� and required � �� red states from a relatively
long �� 	 minute� pre�x of the conversation� In the random subgraph attack we
use indirect collisions� which make it possible to �nd the key with reasonable
probability from the very �rst red state we encounter in the data� even though
it is unlikely to be stored in the disk� This makes it possible to attack A���
with less than two seconds of available data� The actual attack requires several
minutes instead of one second� but this is still a real time attack on normal
telephone conversations�

The attack is based on Hellman�s original time�memory tradeo� for block
ciphers� described in ��� Let E be an arbitrary block cipher� and let P be some
�xed plaintext� De�ne the function f from keys K to ciphertexts C by f�K� �
EK�P �� Assuming that all the plaintexts� ciphertexts and keys have the same
binary size� we can consider f as a random function �which is not necessarily

one�to�one� over a common space U � This function is easy to evaluate and to
iterate but di�cult to invert� since computing the key K from the ciphertext
f�K� � EK�P � is essentially the problem of chosen message cryptanalysis�

Hellman�s idea was to perform a precomputation in which we choose a large
number m of random start points in U � and iterate f on each one of them t
times� We store the m �start point� end point� pairs on a large disk� sorted into
increasing endpoint order� If we are given f�K� for some unknown K which is
located somewhere along one of the covered paths� we can recover K by repeat�
edly applying f in the easy forward direction until we hit a stored end point�
jump to its corresponding start point� and continue to apply f from there� The
last point before we hit f�K� again is likely to be the key K which corresponds
to the given ciphertext f�K��

Since it is di�cult to cover a random graph with random paths in an e��
cient way� Hellman proposed a rerandomization technique which creates multiple
variants of f �e�g�� by permuting the order of the output bits of f�� We use t
variants fi� and iterate each one of them t times on m random start points to
get m corresponding end points� If the parameters m and t satisfy mt� � jU j�
then each state is likely to be covered by one of the variants of f � Since we have
to handle each variant separately �both in the preprocessing and in the actual
attack�� the total memory becomesM � mt and the total running time becomes
T � t�� where M and T can be anywhere along the tradeo� curve M

p
T � jU j�

In particular� Hellman suggests using M � T � jU j����
A straightforward application of this M

p
T � jU j tradeo� to the jU j � 	��

states of A��� with the maximal memory M � 	�� requires time T � 	��� which
is much worse than previously known attacks� The basic idea of the new random
subgraph attack is to apply the time�memory tradeo� to the subspace R of 	��

red states� which is made possible by the fact that it can be e�ciently sampled�
Since T occurs in the tradeo� formula M

p
T � jU j with a square root� reducing

the size of the graph by a modest 	�� �from jU j � 	�� to jRj � 	��� and using
the same memory �M � 	���� reduces the time by a huge factor of 	�� �from
T � 	�� to just T � 	���� This number of steps can be carried out in several
minutes on a fast PC�

What is left is to design a random function f over R whose output�permuted
variants are easy to evaluate� and for which the inversion of any variant yields
the desired key� Each state has a �full name� of �� bits which describes the
contents of its three registers� However� our e�cient sampling technique enables
us to give each red state a �short name� of �� bits �which consists of the partial
contents of the registers and the random choices made during the sampling
process�� and to quickly translate short names to full names� In addition� red
states are characterized �almost uniquely� by their �output names� de�ned as
the �� bits which occur after � in their output sequences� We can now de�ne
the desired function f over ���bit strings as the mapping from short names to
output names of red states� Given a ���bit short name x� we expand it to the
full name of a red state� clock this state �� times� delete the initial ���bit ��
and de�ne f�x� as the remaining �� output bits� The computation of f�x� from

x can be e�ciently done by using the previously described precomputed tables�
but the computation of x from f�x� is exactly the problem of computing the
�short� name of an unknown red state from the �� output bits it produces after
�� When we consider some output�permuted variant fi of f � we obviously have
to apply the same permutation to the given output sequence before we try to
invert fi over it�

The recommended preprocessing stage stores 	�� tables on the hard disk�
Each table is de�ned by iterating one of the variants fi 	

�� times on 	�� randomly
chosen ���bit strings� Each table contains 	�� �start point� end point� pairs� but
implicitly covers about 	�� intermediate states� The collection of all the 	�� tables
requires 	�� disk space� but implicitly covers about 	�� red states�

The simplest implementation of the actual attack iterates each one of the
	�� variants of f separately 	�� times on appropriately permuted versions of the
single red state we expect to �nd in the 	 seconds of data� After each step we
have to check whether the result is recorded as an end point in the corresponding
table� and thus we need T � 	�� probes to random disk locations� At � ms
per probe� this requires more than a day� However� we can again use Rivest�s
idea of special points� We say that a red state is bright if the �rst 	� bits of
its output sequence contain the ���bit � extended by �	 additional zero bits�
During preprocessing� we pick a random red start point� and use fi to quickly
jump from one red state to another� After approximately 	�� jumps� we expect
to encounter another bright red state� at which we stop and store the pair of
�start point� end point� in the hard disk� In fact� each end point consists of a
	� bit �xed pre�x followed by �� additional bits� As explained in the previous
attack� we do not have to store either the pre�x �which is predictable� or the
su�x �which is used as an index� on the hard disk� and thus we need only half
the expected storage� We can further reduce the required storage by using the
fact that the bright red states have even shorter short names than red states ���
instead of �� bits�� and thus we can save 	�� of the space by using bright red
instead of red start points in the table� � During the actual attack� we �nd the
�rst red state in the data� iterate each one of the 	�� variants of f over it until
we encounter a bright red state� and only then search this state among the pairs
stored in the disk� We thus have to probe the disk only once in each one of the
t � 	�� tables� and the total probing time is reduced to 	� seconds�

There are many additional improvement ideas and implementation details
which will be described in the �nal version of this paper�

Acknowledgements� We would like to thank Ross Anderson� Mike Roe�
Jovan Golic� Marc Briceno� and Ian Goldberg for their pioneering contributions

� Note that we do not know how to jump in a direct way from one bright red state
to another� since we do not know how to sample them in an e�cient way� We have
to try about ��� red states in order to �nd one bright red start point� but the total
time needed to �nd the �	� bright red start points in all the tables is less than the
��� complexity of the path evaluations during the preprocessing stage�

to the analysis of A���� which made this paper possible� We would like to thank
Marc Briceno� Ian Goldberg� Ron Rivest and Nicko van Someren for sending
very useful comments on the early version of this paper�

References

�� R� Anderson� M� Roe� A�� http���jya�com�crack�a��htm� �����
�� S� Babbage� A Space�Time Tradeo� in Exhaustive Search Attacks on Stream Ci�

phers� European Convention on Security and Detection� IEE Conference publica�
tion� No� ���� May �����

�� M� Briceno� I� Goldberg� D� Wagner� A pedagogical implementation of A����
http���www�scard�org� May �����

�� J� Golic� Cryptanalysis of Alleged A� Stream Cipher� proceedings of EURO�
CRYPT���� LNCS �����pp��������� Springer�Verlag �����

�� M� E� Hellman� A Cryptanalytic Time�Memory Trade�O�� IEEE Transactions on
Information Theory� Vol� IT���� N �� pp��������� July �����

0 0.5 1 1.5 2

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

8

Tree Weight

A
cc

um
ul

at
ed

 T
re

e
W

ei
gh

t

0 1 2 3 4 5

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

8

Tree Weight

A
cc

um
ul

at
ed

 T
re

e
W

ei
gh

t

MINORITY
MAJORITY
RANDOM

Fig� �� Weight distributions� The graph on the left shows weight distribution for the
majority function� the graph on the right compares the weight distributions of several
clock�control functions�

This article was processed using the LaTEX macro package with LLNCS style

